
A M E T H O D  OF D E T E R M I N I N G  THE T H E R M A L  C O N D U C T I V I T Y  
OF M E T A L S  AT H I G H  T E M P E R A T U R E S  

V. S, Kobushko, B. A. Merisov, and V. I. Khotkevich 

Inzhenerno-fizicheskii zhurnal, VoI. 8, No. 1, pp. 58-68, I965 

The authors examine the thermal equilibrium of a wire heated electrically in a vacuum with the end kept 
at constant temperature. A relationship between the overall length of the wire and the electrical resist- 
ance of its center section is derived, taking into account heat flow to the ends. 

If a wire of length L -- 2l is heated in a vacuum by a current I, the equation of thermal equilibrium, taking con- 
duction into account, may be written as 

12 d2T P ~ (T 4 - Tg) + ~ = O. 
dx ~ kS  kS  2 (i)  

If the temperature of the ends of the wire is fixed and equal to room temperature, then a certain temperature distribu- 
tion T = T(x), given by (1), will be established along the wire. This equation, together with the boundary conditions 
was examined in [1]. 

dT = O; T] = T O 
dx x=I [x=o (s) 

In [1] the authors divided the specimen into sections, in each of which the solution of the equation can be repre- 
sented as the sum of a power series in the chosen variable. To do this they used the relation 

PS~ ( T ~ - - T  4) = 12 P 
kS kS  2 ' (3) 

assuming that there was flo, outflow of heat due to conduction (specimen infinitely long). 

They employed a solution of (1) with boundary conditions (2), expressed in the form 

T ~  To 
T m 

2x] k 4 T m _ T  4 --V-fo {[1-(t + ~)15-(1-~)5+ st)2dr 
0 r 

Assuming that in (4) x = l and T = T l, we obtain an equation connecting L and cr 

(4) 

where a = 

p T ~  4)  1/2 
L] k 4 T ~ - -  T 

Ttn- -  T l To , ~q=l- - -  
Tm T,n 

= l / ~  ~ {[1- -  (t  + a ) p -  ( 1 - -  ~)5+ 5t}-,/2dt, 

0 

(5) 

For a = 0 the integral diverges at the lower limit.  It is easy to show that the divergence is logarithmic in nature. 
c~ << 1, by suitably dividing up the limits of integration, (5) may be written in the form: 

When 

4 - - -  4 L] k T m - -  ToJ - - - - l n ~ - t - O ( ~ ,  "@ 

Now the relation between 4~ and c~ does not contain singularities in the vicinity 0f zero, but 

lim qb (a, ~) ___ D (~). 

(6) 
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The function D(q) may be written as the sum of a series [1] 

D (~q) =- In ~ n u - ~  ~1 -F ~2 240 ~a §  

It may be seen from the foregoing that the asymptotic behavior of the function L = L(a) for a "-~ 0, i . e . ,  when 
T l --~ T m, may be expressed as follows: 

The quantity 

L = l (k (T4m --T~) ) uz 
I ? T ~  ( - -  In a + D).  (~) 

/,/-,4 ,p4~ \ I / 2  
tg = 1 - - - o j  / 

should be considered as the slope of the asymptote to the graph of the relation L = L(--ln a),  from which it follows that, 
having the experimental curve of this relation, we can also determine the thermal conductivity k. 

If we take into account the temperature dependence of the quantities p and s in the form of linear terms, and as- 
sume that the temperature coefficient of the thermal conductivity is substantially less than the temperature coefficients 
of the resistance g and the total emissivity x, then (1) retains its form, but the coefficients depend on the temperature 

p - - p ~  [1--15 ( T i n - - T ) I  and z = e,n [1---z  ( T ~ -  T)I. 

Then relations (7) and (8) may be written as 

L 1 ( k(T4m--T4~ ) u2. 
= - -  ( - -  In ~ q- D,);  D 1 ~ D 

(9) 

and 

4 To 
Here 6 - 4Tin 

1 ( k(T4m--T4)) '/2 1 
1 i 

X{k[ mf + ")]-' } 
k T4 - (io) 

It may be concluded from these formulas, that taking into account the temperature dependences of p and s intro- 

duces a correction into the relation linking the experimental value tan ~0 and the unknown value of the thermal conduc- 

t ivi ty.  

To construct the experimental  curve L = L(-- in ct), a knowledge of the quantity a = (Tm - T/)/T m for various L is 

required. It can be shown that a may be expressed correct to a fixed factor in terms of the measured resistances of the 

center section of the specimen. 

Let us examine a certain section of the wire of length x0, which is nonuniformly heated to the temperature T = 

= T(x). Let the temperature range over the whole section be small enough for it to be assumed, with a high degree of 

accuracy, that the resistivity p in this temperature interval is a linear function of temperature with a coefficient ~. Let 

our temperature interval adjoin the temperatUre T m, The resistance of the section may be written as: 

R=I~m[I--~(T m - L f f )  1. 

Then, because of the linear temperature behavior of the resistivity, 

(LI) 
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Xo 

Tef  f - -  ~ Tdx = Tav " 

0 

(12) 

A simple calculation, based on the solution of linear equation (1), shows that the temperature behavior near the 
middle of the specimen is given by 

T = T m (1 - -  ~ ch z) (13) 

(the point z = 0 marks the middle of the specimen, z being the ctimensionless length). Substituting (13) in (12), we find 

Tm - -  Tef f  sh z 0 

Tm z o 
(14) 

According to (1I), howeVer, 

T~  - -  T e f  f __ Rm -- R 1 
T~ Rm ~ T,~ (12) 

Comparing (15) and (14), we see that a differs from (R m - R)/R m by a factor which remains unchanged under the exper- 

imental  conditions. This means that, due to the logarithm, (7) and (9) retain their form with a =(T m - T/)/T m re- 

placed by (R m - R)/R m. 

The slope remains unchanged, and consequently the working formula retains its previous form. 

An expression for the thermal conductivity is obtained from (10): 

k = ]2 9rn T~m(1-+ ~) I2Rm ( T3m z -- ~) 
T ~  - -  T 4 tg z cp = s tg'- % 

A.S T4m-- Ta ' 4 (lS) 

( where tan ~o is the slope of the asymptote to the curve L = L - -  In R-~ J 

To calculate k from this formula, we require additional information about the temperature behavior of the e lec-  

trical resistance and a knowledge of the average coefficient of linear expansion in the range of temperatures studied. 

Determination of the respective coefficients does not present great difficulty from the experimental  point of view. De- 

terminat ion of the coefficient x itself does not, in general,  require the setting up of additional experiments, since e is 

measured for each temperature T m in accordance with the proposed method using (3). 

z I The specimen to be examined was placed inside an evacuated glass vessel 

f 
and soldered to solid copper contacts to achieve constant temperature at the ends. 

A platinum wire 0.3 mm in dLameter was used. Two platinum wires of 0.05 mm 

0,15 in diameter were welded to the center section of the specimen to serve as poten- 

t ia l  leads, The resistance was measured by the usual potentiometric method. 

The ini t ia l  length of the wire was so chosen that the specimen could be consid- 

a,.~0 ~ ered infini tely long, in the sense that heat flow from the center section to the 

ends due to thermal conduction was practically zero. The ratio of length to dia-  
meter was approximately 10 a. Accordingly, measurement of the resistance of 

0,25 . ~  the center section of a wire of this length for a given heater current yielded a 

value of R m corresponding to heating of the section to the temperature T m. By J 
shortening the wire symmetrical ly from both ends, and each t ime  measuring at 

OZg YI5 34 ,r the same current, we obtained a set of values of the length L and corresponding 

values of the resistance of the center section R (see Fig. 1). 

Fig. 1. Total length of wire L as a 
Calculations have shown that the relat ive error in the measured resistance 

function of the resistance R of its cen-  
introduced by the presence of the potential leads, insofar as these distort the 

ter section for the same current. 
temperature field of the specimen, is approximately 0.3%, while the overall 

error of the method does not exceed 8%. 

Fig. 2 gives a graph of L as a function of-ln((R m - R)/Rm) (for T m = 978"K). The graph shows that the experi- 

mental  curve does not have the form of a curve approaching its asymptote without l imi t .  The divergence of the curve 

obtained from its asymptote in the region of large arguments is due to error in the measuring equipment; for very small 

differences R m - R, the relat ive error k(R m - R)/(R m - R) ceases to be small, as a result of which the quantity under 
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the  log sign has the  average  error of the equ ipment  as its l im i t ,  which also l imits  further increase in the absolute va lue  

of the logar i thm i tself .  This is expressed in that  the  expe r imen ta l  curve enters, as it were,  a "saturat ion" region,  as 
may  be  seen in Fig .  2. The  asymptot ic  formula (9) is r ea l i zed  expe r imen ta l ly  to a sat isfactory degree  over  a cer ta in  

range of lengths of  our spec imen  ( the l inear  part of Fig .  2). This range is charac ter i s t ic  of the  g iven spec imen  and the  

g iven measur ing equ ipment .  To eva lua te  the t he rma l  conduct iv i ty  we used the slope of the  straight portion of the  ex 

pe r imen ta l  curve .  The  d i f ference  be tween  the  slope of the straight sect ion and the true slope of the asymptote  repre 

sents the basic error of the method .  The  error was ca lcu la ted  with a l lowance  for this d i f fe rence .  
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Fig.  2. To ta l  wire length L vs. 

- lna ,  a = (T m - TI ) /T  m 
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Fig.  3. Comparison of the  authors '  

values  for the  resistance of p la t inum 

(a) with handbook data (b) 

To check  the  method,  we measured the  t he rma l  conduc t iv i ty  of p la t inum at various tempera tures ,  The  corre-  

sponding results a re  g iven  in Fig.  3, and, wi thin  t he  l imi ts  of expe r imen ta l  error, are in sat isfactory ag reemen t  with 

results of other authors [2]. 

The  proposed method is sui table  for use on wire spec imens  at t empera tures  ranging from a l i t t l e  above room t e m -  

perature right up to the  region of the  me l t i ng  point .  

NOTATION 

T - absolute t empera tu re ;  I - current in tensi ty;  j - current density;  L, Z, A, x - lengths; S - area;  p - pe r im-  

eter ;  R - e l e c t r i c a l  resis tance of center  portion of spec imen;  p - resis t ivi ty;  k - t he rma l  conduct iv i ty ;  ~ - S te fan-  

Bol tzmann constant;  ~ - ( d i m e n s i o n l e s s )  emiss iv i ty ;  8 - t empera tu re  coe f f i c i en t  of p; ~< - t e m p e r a t u r e  coe f f i c i en t  of e; 

c~, 6, ~ - dimensionless  t empe ra tu r e  di f ferences;  z - dimensionless length;  R m - res is tance sect ion hea ted  uni formly 
to t empera tu re  Tin; T e f f  - e f f e c t i v e  t empera tu re ,  corresponding to a g iven  t empe ra tu r e  distr ibution in the  sect ion,  

and a g iven  t e m p e r a t u r e  coe f f i c i en t  8. Subscripts: m - absence of heat  flow to the  ends of the spec imen;  R m and A m 

- respec t ive ly ,  resis tance and l eng th  of cen ter  sect ion of wire at t empe ra tu r e  Tin; T l - t empera tu re  of midd le  of spec 

i m e n  with hea t  flow to the  ends; To - room tempera tu re ;  x0, z0 - f ixed length .  
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